Material Removal Optimization Strategy of 3D Block Cutting Based on Geometric Computation Method

Author:

Shao HuiORCID,Liu Qimeng,Gao ZhiweiORCID

Abstract

During the material removal stage in stone rough processing, milling type has been widely explored, which, however, may cause time and material consumption, as well as substantial stress for the environment. To improve the material removal rate and waste reuse rate in the rough processing stage for three-dimensional stone products with a special shape, in this paper, circular saw disc cutting is explored to cut a convex polyhedron out of a blank box, which approaches a target product. Unlike milling optimization, this problem cannot be well solved by mathematical methods, which have to be solved by geometrical methods instead. An automatic block cutting strategy is proposed intuitively by considering a series of geometrical optimization approaches for the first time. To obtain a big removal block, constructing cutting planes based on convex vertices is uniquely proposed. Specifically, the removal vertices (the maximum thickness of material removal) are searched based on the octree algorithm, and the cutting plane is constructed based on this thickness to guarantee a relatively big removal block. Moreover, to minimize the cutting time, the geometrical characteristics of the intersecting convex polygon of the cutting plane with the convex polyhedron are analyzed, accompanied by the constraints of the guillotine cutting mode. The optimization algorithm determining the cutting path is presented with a feed direction accompanied by the shortest cutting stroke, which confirms the shortest cutting time. From the big removal block and shortest cutting time, the suboptimal solution of the average material removal rate (the ratio of material removal volume to cutting time) is generated. Finally, the simulation is carried out on a blank box to approach a bounding sphere both on MATLAB and the Vericut platform. In this case study, for the removal of 85% of material with 19 cuts, the proposed cutting strategy achieves five times higher the average material removal rate than that of one higher milling capacity case.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3