Author:
Rincón-Molina Clara Ivette,Martínez-Romero Esperanza,Manzano-Gómez Luis Alberto,Rincón-Rosales Reiner
Abstract
Biofertilizers formulated with nitrogen-fixing bacteria represent an alternative to chemical fertilizers because they increase soil fertility and protect the environment. Therefore, the objective of this study was to analyze the effects on the growth of guava “pear” (Psidium guajava cv.) after inoculation with a nitrogen fixing bacterium Sinorhizobium mexicanum ITTG-R7T. The study was carried out in an agricultural rural area of Chiapas, Mexico, where farmers do not have programs of regenerative agriculture. First, the agricultural soil was subjected to physicochemical and metagenomic analysis in order to determine the soil quality and its bacterial community composition. Likewise, multifunctional biochemical tests and plant inoculation assays were evaluated to determine the potential of S. mexicanum ITTG-R7T as plant-growth-promoting bacteria (PGPB). The site was rain fed and had silty clay loam soil with abundant Bacillaceae. S. mexicanum ITTG-R7T showed different properties as PGPB such as the production of indole compounds, synthesis of extracellular enzymes, phosphate solubilization, synthesis of siderophores, ACC (1-aminocyclopropane-1-carboxylate) deaminase, and nitrogenase activity (ARA). When the strain ITTG-R7 T was combined with chemical nutrients, it had the highest positive effect on the growth and development of guava plants. Guava biofertilization with ITTG-R7T had a significant influence (p < 0.05) mainly on the total plant height (368.83 cm), number of flowers (36.0) and the amount of chlorophyll (2.81 mg mL−1) in comparison with the other treatments evaluated. ITTG-R7T is a promising strain for improving the guava crop yield.
Funder
National Technological Institute of Mexico
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献