A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching

Author:

Mohseni SoheilORCID,Brent Alan C.ORCID

Abstract

Rule-based micro-grid dispatch strategies have received significant attention over the last two decades. However, a recent body of literature has conclusively shown the benefits of operational scheduling optimisation while optimally sizing micro-grids. This is commonly referred to as micro-grid design and dispatch co-optimisation (MGDCO). However, as far as can be ascertained, all the existing MGDCO models in the literature consider a 24-h-resolved day-ahead timeframe for the associated optimal energy scheduling processes. That is, intelligent, look-ahead energy dispatch strategies over multi-day timeframes are generally absent from the wider relevant literature. In response, this paper introduces a novel MGDCO modelling framework that integrates an arbitrage-aware linear programming-based multi-day energy dispatch strategy into the standard metaheuristic-based micro-grid investment planning processes. Importantly, the model effectively extends the mainstream energy scheduling optimisation timeframe in the micro-grid investment planning problems by producing optimal dispatch solutions that are aware of scenarios over three days. Based on the numeric simulation results obtained from a test-case micro-grid, the effectiveness of the proposed optimisation-based dispatch strategy in the micro-grid sizing processes is verified, while retaining the computational tractability. Specifically, comparing the proposed investment planning framework, which uses the formulated 72-h dispatch strategies, with the business-as-usual MGDCO methods has demonstrated that it can reduce the micro-grid’s whole-life cost by up to 8%. Much of the outperformance of the proposed method can be attributed to the effective use of the behind-the-meter Li-ion battery storage, which improves the overall system flexibility.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3