Abstract
Scientists have been paying more attention to the shortage of water and energy sources all over the world, especially in the Middle East and North Africa (MENA). In this article, a microgrid configuration of a photovoltaic (PV) plant with fuel cell (FC) and battery storage systems has been optimally designed. A real case study in Egypt in Dobaa region of supplying safety loads at a nuclear power plant during emergency cases is considered, where the load characteristics and the location data have been taken into consideration. Recently, many optimization algorithms have been developed by researchers, and these algorithms differ from one another in their performance and effectiveness. On the other hand, there are recent optimization algorithms that were not used to solve the problem of microgrids design in order to evaluate their performance and effectiveness. Optimization algorithms of equilibrium optimizer (EQ), bat optimization (BAT), and black-hole-based optimization (BHB) algorithms have been applied and compared in this paper. The optimization algorithms are individually used to optimize and size the energy systems to minimize the cost. The energy systems have been modeled and evaluated using MATLAB.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference34 articles.
1. Site selection of large-scale grid-connected solar PV system in Egypt;Sultan,2018
2. Design and evaluation of PV-wind hybrid system with hydroelectric pumped storage on the National Power System of Egypt;Sultan;Glob. Energy Interconnect.,2018
3. LVCI approach for optimal allocation of distributed generations and capacitor banks in distribution grids based on moth–flame optimization algorithm
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献