A comparative study of advanced evolutionary algorithms for optimizing microgrid performance under dynamic pricing conditions

Author:

Elazab Rasha,Abdelnaby Ahmed T.,Ali A.A.

Abstract

AbstractThe integration of microgrids into the existing power system framework enhances the reliability and efficiency of the utility grid. This manuscript presents an innovative mathematical paradigm designed for the optimization of both the structural and operational aspects of a grid-connected microgrid, leveraging the principles of Demand-Side Management (DSM). The focus of this work lies in a comprehensive exploration of the implications brought about by the Renewable Generation-Based Dynamic Pricing Demand Response (RGDP-DR) mechanism, particularly in terms of its influence on the optimal microgrid configuration, considering perspectives from end-users and the utility entity. This inquiry is rooted in a holistic assessment that encompasses technical and economic performance benchmarks. The RGDP-induced DR framework adeptly addresses the needs of the consumer base, showcasing notable efficiency and economic feasibility. To address the intricate nonlinear optimization challenge at hand, we employ an evolutionary algorithm named the "Dandelion Algorithm" (DA). A rigorous comparative study is conducted to evaluate the efficacy of four optimization techniques, affirming the supremacy of the proposed DA. Within this discourse, the complexity of microgrid sizing is cast as a dual-objective optimization task. The twin objectives involve minimizing the aggregate annual outlay and reducing emissions. The results of this endeavor unequivocally endorse the superiority of the DA over its counterparts. The DA demonstrates exceptional proficiency in orchestrating the most cost-effective microgrid and consumer invoice, surpassing the performance of alternative optimization methodologies.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3