Abstract
The length of an acceleration lane is one of the dominant freeway geometric design parameters. This length requires new analyses to anticipate the needs of heavy commercial vehicle (HCV) platooning. We evaluated the safety and operational impact of HCV platooning on acceleration lane length for a freeway ramp in Ontario, Canada. This study modified the 2018 AASHTO’s acceleration lane length estimation analytical model. Furthermore, this study used a VISSIM micro-simulation model and surrogated safety assessment model (SSAM) to examine the safety and operational impact on the real-world circumstances of HCV platooning at 0.6 s and 1.2 s headways and different market penetration rates of 0%, 5%, and 10%. The results suggest a minimum acceleration lane length of 600 m for platooned HCVs, which is inadequate compared to American and Canadian design guidelines. An extended acceleration lane length (600 m) will improve safety by reducing conflict by 19.2% and operational performance by reducing 3.9% of 85th percentile merging time for the operation of 5% HCV platooning with 0.6 s headway compared with 350 m acceleration lane length. This study suggests 5% of traffic containing two HCV platoons with 0.6 s headway may be reasonable for operation during certain hours of the day under existing conditions.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference76 articles.
1. Empirical Study of Freeway Interchange Crash Characteristics and Influence Areas;Zhang;Ph.D. Thesis,2016
2. Geometric Design Guide for Canadian Roads,2017
3. A Policy on Geometric Design of Highways and Streets,2018
4. A Policy on Design Standards, Interstate System,1965
5. Vehicle Speed and Acceleration Profile Study for Metered On-Ramps in California
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献