Research on Automatic Driving Trajectory Planning and Tracking Control Based on Improvement of the Artificial Potential Field Method

Author:

Li Yongyi,Yang Wei,Zhang Xiaorui,Kang Xi,Li Mengfei

Abstract

With the continuous increase in motor vehicle ownership in recent times, traditional transportation has been unable to meet people’s travel needs. Research on autonomous driving technology will help solve a series of problems associated with driving, such as traffic accidents, traffic congestion, energy consumption, and environmental pollution. In this paper, an improved artificial potential field method is proposed to complete the planning of automatic driving trajectories by adding the distance adjustment factor, dynamic road repulsive field, velocity repulsive field, and acceleration repulsive field. The invasive weed algorithm is introduced to solve the defects associated with the traditional artificial potential field method. The prediction model—for which corresponding constraint variables were set and an optimal objective function was established to build up the MPC model controller to achieve the goal of trajectory tracking—was linearized and discretized from a vehicle dynamics model. Finally, co-simulation based on MATLAB and CarSim was used to verify the practicability of the model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference39 articles.

1. Review of Key Technologies for Autonomous Vehicle Test Scenario Construction;Xu;Automot. Eng.,2021

2. Research on Intelligent Vehicle Path Tracking Control;Man;Ph.D. Thesis,2021

3. Sensor Data Sharing, Driverless Vehicle Remote Control to Boost Cellular V2X Technologies;Drubin;Microw. J.,2018

4. Research on Path Planning and Motion Control Algorithm for Unmanned Vehicles on Structured Roads;Xie;Ph.D. Thesis,2019

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3