A Multi-Dimensional Deep Siamese Network for Land Cover Change Detection in Bi-Temporal Hyperspectral Imagery

Author:

Seydi Seyd TeymoorORCID,Shah-Hosseini RezaORCID,Amani MeisamORCID

Abstract

In this study, an automatic Change Detection (CD) framework based on a multi-dimensional deep Siamese network was proposed for CD in bi-temporal hyperspectral imagery. The proposed method has two main steps: (1) automatic generation of training samples using the Otsu algorithm and the Dynamic Time Wrapping (DTW) predictor, and (2) binary CD using a multidimensional multi-dimensional Convolution Neural Network (CNN). Two bi-temporal hyperspectral datasets of the Hyperion sensor with a variety of land cover classes were used to evaluate the performance of the proposed method. The results were also compared to reference data and two state-of-the-art hyperspectral change detection (HCD) algorithms. It was observed that the proposed method relatively had higher accuracy and lower False Alarm (FA) rate, where the average Overall Accuracy (OA) and Kappa Coefficient (KC) were more than 96% and 0.90, respectively, and the average FA rate was lower than 5%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3