Abstract
Principal Component Analysis (PCA) is a method based on statistics and linear algebra techniques, used in hyperspectral satellite imagery for data dimensionality reduction required in order to speed up and increase the performance of subsequent hyperspectral image processing algorithms. This paper introduces the PCA approximation method based on a geometric construction approach (gaPCA) method, an alternative algorithm for computing the principal components based on a geometrical constructed approximation of the standard PCA and presents its application to remote sensing hyperspectral images. gaPCA has the potential of yielding better land classification results by preserving a higher degree of information related to the smaller objects of the scene (or to the rare spectral objects) than the standard PCA, being focused not on maximizing the variance of the data, but the range. The paper validates gaPCA on four distinct datasets and performs comparative evaluations and metrics with the standard PCA method. A comparative land classification benchmark of gaPCA and the standard PCA using statistical-based tools is also described. The results show gaPCA is an effective dimensionality-reduction tool, with performance similar to, and in several cases, even higher than standard PCA on specific image classification tasks. gaPCA was shown to be more suitable for hyperspectral images with small structures or objects that need to be detected or where preponderantly spectral classes or spectrally similar classes are present.
Subject
General Earth and Planetary Sciences
Reference48 articles.
1. Big Data for Remote Sensing: Challenges and Opportunities
2. Principal component analysis for hyperspectral image classification;Rodarmel;Surv. Land Inf. Sci.,2002
3. Remote Sensing Image Scene Classification: Benchmark and State of the Art
4. GIS and Geocomputation for Water Resource Science and Engineering;Dixon,2016
5. Simple Image Classification Using Principal Component Analysis (PCA);Norko,2015
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献