Weed Species Identification: Acquisition, Feature Analysis, and Evaluation of a Hyperspectral and RGB Dataset with Labeled Data

Author:

Ronay Inbal1,Lati Ran Nisim2ORCID,Kizel Fadi1ORCID

Affiliation:

1. Laboratory for Multidimensional Analysis in Remote Sensing (MARS), Department of Mapping and Geoinformation Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

2. Department of Plant Pathology and Weed Research, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat-Yishai 30095, Israel

Abstract

Site-specific weed management employs image data to generate maps through various methodologies that classify pixels corresponding to crop, soil, and weed. Further, many studies have focused on identifying specific weed species using spectral data. Nonetheless, the availability of open-access weed datasets remains limited. Remarkably, despite the extensive research employing hyperspectral imaging data to classify species under varying conditions, to the best of our knowledge, there are no open-access hyperspectral weed datasets. Consequently, accessible spectral weed datasets are primarily RGB or multispectral and mostly lack the temporal aspect, i.e., they contain a single measurement day. This paper introduces an open dataset for training and evaluating machine-learning methods and spectral features to classify weeds based on various biological traits. The dataset comprises 30 hyperspectral images, each containing thousands of pixels with 204 unique visible and near-infrared bands captured in a controlled environment. In addition, each scene includes a corresponding RGB image with a higher spatial resolution. We included three weed species in this dataset, representing different botanical groups and photosynthetic mechanisms. In addition, the dataset contains meticulously sampled labeled data for training and testing. The images represent a time series of the weed’s growth along its early stages, critical for precise herbicide application. We conducted an experimental evaluation to test the performance of a machine-learning approach, a deep-learning approach, and Spectral Mixture Analysis (SMA) to identify the different weed traits. In addition, we analyzed the importance of features using the random forest algorithm and evaluated the performance of the selected algorithms while using different sets of features.

Funder

Israeli Council for Higher Education (CHE)’s planning and budgeting committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3