Advanced Energy Management Strategy of Photovoltaic/PEMFC/Lithium-Ion Batteries/Supercapacitors Hybrid Renewable Power System Using White Shark Optimizer

Author:

Alhumade Hesham123ORCID,Rezk Hegazy45ORCID,Louzazni Mohamed6ORCID,Moujdin Iqbal Ahmed27ORCID,Al-Shahrani Saad1

Affiliation:

1. Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Wadi Alddawasir 11991, Saudi Arabia

5. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt

6. Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaib Doukkali University of El Jadida, El Jadida 24000, Morocco

7. Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

The slow dynamic response of a proton exchange membrane fuel cell (PEMFC) to high load change during deficit periods must be considered. Therefore, integrating the hybrid system with energy storage devices like battery storage and/or a supercapacitor is necessary. To reduce the consumed hydrogen, an energy management strategy (EMS) based on the white shark optimizer (WSO) for photovoltaic/PEMFC/lithium-ion batteries/supercapacitors microgrid has been developed. The EMSs distribute the load demand among the photovoltaic, PEMFC, lithium-ion batteries, and supercapacitors. The design of EMSs must be such that it minimizes the use of hydrogen while simultaneously ensuring that each energy source performs inside its own parameters. The recommended EMS-based-WSO was evaluated in regard to other EMSs regarding hydrogen fuel consumption and effectiveness. The considered EMSs are state machine control strategy (SMCS), classical external energy maximization strategy (EEMS), and optimized EEMS-based particle swarm optimization (PSO). Thanks to the proposed EEMS-based WSO, hydrogen utilization has been reduced by 34.17%, 29.47%, and 2.1%, respectively, compared with SMCS, EEMS, and PSO. In addition, the efficiency increased by 6.05%, 9.5%, and 0.33%, respectively, compared with SMCS, EEMS, and PSO.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3