Modeling and Improving the Efficiency of Crushing Equipment

Author:

Vasilyeva Natalia1ORCID,Golyshevskaia Uliana1,Sniatkova Aleksandra1

Affiliation:

1. Mineral Raw Material Processing Faculty, Saint Petersburg Mining University, 199106 St. Petersburg, Russia

Abstract

Over the last few decades, the demand for energy-efficient mineral-processing methods has continued. The necessity to develop energy-efficient technologies for the mineral industry will increase in the future, considering the exhaustion of high-quality resources and severe environmental limitations. The subject of this study is crushing equipment. It is a complex of units designed to reduce the fraction of ore and non-metallic solid materials. It is also designed to make them more symmetrical in order to facilitate their transport and later use in production. Thus, the urgency of using crushers in mining and processing plants is clear, so it is relevant to find ways to optimize their operation and reduce energy consumption. This article presents a systematic review of the task of improving the energy efficiency of crushing units. This is achieved by studying modelling methods and results, the automation of crushing and grinding processes, and the wear reduction of crusher components. On the grounds of the reviewed sources, the main methods of increasing the efficiency of crushing units are identified. A mathematical model of the cone crusher was designed. The simulation error is less than 6%. A simulation experiment was carried out on the mathematical model. The dependences of the current and power of the crusher electric drive on the feeder capacity are determined; the graphs have a symmetrical position relative to the approximating curve (R2 ≈ 0.9).

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3