Efficient DCNN-LSTM Model for Fault Diagnosis of Raw Vibration Signals: Applications to Variable Speed Rotating Machines and Diverse Fault Depths Datasets

Author:

Ahsan Muhammad1ORCID,Salah Mostafa M.2ORCID

Affiliation:

1. Department of Measurements and Control Systems, Silesian University of Technology, 44-100 Gliwice, Poland

2. Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt

Abstract

Bearings are the backbone of industrial machines that can shut down or damage the whole process when a fault occurs in them. Therefore, health diagnosis and fault identification in the bearings are essential to avoid a sudden shutdown. Vibration signals from the rotating bearings are extensively used to diagnose the health of industrial machines as well as to analyze their symmetrical behavior. When a fault occurs in the bearings, deviations from their symmetrical behavior can be indicative of potential faults. However, fault identification is challenging when (1) the vibration signals are recorded from variable speeds compared to the constant speed and (2) the vibration signals have diverse fault depths. In this work, we have proposed a highly accurate Deep Convolution Neural Network (DCNN)–Long Short-Term Memory (LSTM) model with a SoftMax classifier. The proposed model offers an innovative approach to fault diagnosis, as it obviates the need for preprocessing and digital signal processing techniques for feature computation. It demonstrates remarkable efficiency in accurately diagnosing fault conditions across variable speed vibration datasets encompassing diverse fault conditions, including but not limited to outer race fault, inner race fault, ball fault, and mixed faults, as well as constant speed datasets with varying fault depths. The proposed method can extract the features automatically from these vibration signals and, hence, are excellent to enhance the performance and efficiency to diagnose the machine’s health. For the experimental study, two different datasets—the constant speed with different fault depths and variable speed rotating machines—are considered to validate the performance of the proposed method. The accuracy achieved for the variable speed rotating machine dataset is 99.40%, while for the diverse fault dataset, the accuracy reaches 99.87%. Furthermore, the experimental results of the proposed method are compared with the existing methods in the literature as well as the artificial neural network (ANN) model.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Hydraulic Cylinder Faults, Diagnostics, and Prognostics;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-06-20

2. Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal;Measurement Science and Technology;2024-06-04

3. Advanced Fault Diagnosis in Rotating Machines Using 2D Grayscale Images with Improved Deep Convolutional Neural Networks;2023 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA);2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3