Electrochemical Assessment of Mitigation of Desulfovibrio ferrophilus IS5 Corrosion against N80 Carbon Steel and 26Cr3Mo Steel Using a Green Biocide Enhanced by a Nature-Mimicking Biofilm-Dispersing Peptide

Author:

Xu Lingjun1ORCID,Kijkla Pruch2,Kumseranee Sith2,Punpruk Suchada2,Gu Tingyue1

Affiliation:

1. Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA

2. PTT Exploration and Production, Bangkok 10900, Thailand

Abstract

MIC (microbiologically influenced corrosion) is problematic in many industries, especially in the oil and gas industry. In this work, N80 carbon steel for pipelines was tested with 26Cr3Mo chromium pipeline steel for comparison in SRB (sulfate-reducing bacterium) MIC mitigation using a THPS (tetrakis hydroxymethyl phosphonium sulfate)-based commercial biocide (Biotreat 5475 with 75–80% THPS by mass). Peptide A, a nature-mimicking synthetic cyclic peptide (cys-ser-val-pro-tyr-asp-tyr-asn-trp-tyr-ser-asn-trp-cys) with biofilm dispersal ability was used as a biocide enhancer. Metal coupons covered with 3-d old Desulfovibrio ferrophilus IS5 biofilms were immersed in different biocide solutions. After 1-h treatment, 200 ppm Biotreat 5475, 200 ppm Biotreat 5475 + 200 nM (360 ppb) Peptide A, and 400 ppm Biotreat 5475 achieved 0.5-log, 1.7-log and 1.9-log reductions in sessile cell count on N80, and 0.7-log, 1.7-log, and 1.8-log on 26Cr3Mo, respectively. The addition of 200 nM Peptide A cut the THPS biocide dosage by nearly half. Biocide injection tests in electrochemical glass cells after 1 h exhibited 15%, 70%, and 72% corrosion inhibition efficiency (based on corrosion current density) on N80, and 27%, 79%, 75% on 26Cr3Mo, respectively. Linear polarization resistance and electrochemical impedance spectrometry results also indicated antimicrobial efficacies.

Funder

PTT Exploration and Petrobras

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3