Revealing roles of S-layer protein (SlpA) in Clostridioides difficile pathogenicity by generating the first slpA gene deletion mutant

Author:

Wang Shaohua12ORCID,Courreges Maria C.1,Xu Lingjun3,Gurung Bijay1,Berryman Mark1,Gu Tingyue3

Affiliation:

1. Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA

2. Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA

3. Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio, USA

Abstract

ABSTRACT Clostridioides difficile infection (CDI) with high morbidity and high mortality is an urgent threat to public health, and C. difficile pathogenesis studies are eagerly required for CDI therapy. The major surface layer protein, SlpA, was supposed to play a key role in C. difficile pathogenesis; however, a lack of isogenic slpA mutants has greatly hampered analysis of SlpA functions. In this study, the whole slpA gene was successfully deleted for the first time via CRISPR-Cas9 system. Deletion of slpA in C. difficile resulted in smaller, smother-edged colonies, shorter bacterial cell size, and aggregation in suspension. For life cycle, the mutant demonstrated lower growth (changes of optical density at 600 nm, OD600) but higher cell density (colony-forming unit, CFU), decreased toxins production, and inhibited sporulation. Moreover, the mutant was more impaired in motility, more sensitive to vancomycin and Triton X-100-induced autolysis, releasing more lactate dehydrogenase. In addition, SlpA deficiency led to robust biofilm formation but weak adhesion to human host cells. IMPORTANCE Clostridioides difficile infection (CDI) has been the most common hospital-acquired infection, with a high rate of antibiotic resistance and recurrence incidences, become a debilitating public health threat. It is urgently needed to study C. difficile pathogenesis for developing efficient strategies as CDI therapy. SlpA was indicated to play a key role in C. difficile pathogenesis. However, analysis of SlpA functions was hampered due to lack of isogenic slpA mutants. Surprisingly, the first slpA deletion C. difficile strain was generated in this study via CRISPR-Cas9, further negating the previous thought about slpA being essential. Results in this study will provide direct proof for roles of SlpA in C. difficile pathogenesis, which will facilitate future investigations for new targets as vaccines, new therapeutic agents, and intervention strategies in combating CDI.

Funder

Ohio University

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3