Phentolamine Significantly Enhances Macrolide Antibiotic Antibacterial Activity against MDR Gram-Negative Bacteria

Author:

Cui Ze-Hua12,He Hui-Ling12,Zheng Zi-Jian12,Yuan Zhao-Qi12,Chen Ying12,Huang Xin-Yi12,Ren Hao12,Zhou Yu-Feng12ORCID,Zhao Dong-Hao12,Fang Liang-Xing12,Yu Yang12,Liu Ya-Hong123,Liao Xiao-Ping12,Sun Jian12

Affiliation:

1. Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China

3. Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China

Abstract

Objectives: Multidrug-resistant (MDR) Gram-negative bacterial infections have limited treatment options due to the impermeability of the outer membrane. New therapeutic strategies or agents are urgently needed, and combination therapies using existing antibiotics are a potentially effective means to treat these infections. In this study, we examined whether phentolamine can enhance the antibacterial activity of macrolide antibiotics against Gram-negative bacteria and investigated its mechanism of action. Methods: Synergistic effects between phentolamine and macrolide antibiotics were evaluated by checkerboard and time–kill assays and in vivo using a Galleria mellonella infection model. We utilized a combination of biochemical tests (outer membrane permeability, ATP synthesis, ΔpH gradient measurements, and EtBr accumulation assays) with scanning electron microscopy to clarify the mechanism of phentolamine enhancement of macrolide antibacterial activity against Escherichia coli. Results: In vitro tests of phentolamine combined with the macrolide antibiotics erythromycin, clarithromycin, and azithromycin indicated a synergistic action against E. coli test strains. The fractional concentration inhibitory indices (FICI) of 0.375 and 0.5 indicated a synergic effect that was consistent with kinetic time–kill assays. This synergy was also seen for Salmonella typhimurium, Klebsiella pneumoniae, and Actinobacter baumannii but not Pseudomonas aeruginosa. Similarly, a phentolamine/erythromycin combination displayed significant synergistic effects in vivo in the G. mellonella model. Phentolamine added singly to bacterial cells also resulted in direct outer membrane damage and was able to dissipate and uncouple membrane proton motive force from ATP synthesis that, resulted in enhanced cytoplasmic antibiotic accumulation via reduced efflux pump activity. Conclusions: Phentolamine potentiates macrolide antibiotic activity via reducing efflux pump activity and direct damage to the outer membrane leaflet of Gram-negative bacteria both in vitro and in vivo.

Funder

National Natural Science Foundation of China General Program

Guangdong Major Project of Basic and Applied Basic Research

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Local Innovative and Research Teams Project of Guangdong Peral River Talents Program

Laboratory of Lingnan Modern Agriculture Project

Innovation Team Project of Guangdong University

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3