Bi/mZVI Combined with Citric Acid and Sodium Citrate to Mineralize Multiple Sulfa Antibiotics: Performance and Mechanism

Author:

Su Xiaoming,Lv Hao,Gong Jianyu,Zhou Man

Abstract

The oxidative mineralization of sulfanilamide drugs (SAs) using micro-size zero-valent iron (mZVI) cooperated with a citric acid buffer solution was evaluated. In this study SM2, SMX, and SD could be removed at 66%, 89%, and 83%, respectively, in a 0.5% Bi/mZVI+CA+NaCA system within 2 h. Based on our analysis, the produced ·OH could be ascribed from the complexation between citrate iron (Fe(II)[Cit]−) and the generated H2O2 resulting from the activation of O2 on the mZVI surface in the Bi/mZVI+CA+NaCA system, further inducing the mineralization of antibiotics. The related possible degradation pathways were proposed. Two similar degradation pathways of SM2, SMX, and SD in the mixed liquid, including hydroxylation and SO2 extrusion, were solved. Meanwhile, there was an additional proposed degradation pathway for SMX to be degraded more effectively, as reflected in the opening of the N-O bond on the benzene ring. Therefore, this work provides an experimental basis and theoretical support for the efficient treatment of antibiotic wastewater in real industry by using an iron-based method.

Funder

The National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3