Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics

Author:

Mazurek-Popczyk Justyna,Pisarska JustynaORCID,Bok Ewa,Baldy-Chudzik KatarzynaORCID

Abstract

Antibiotic resistance concerns various areas with high consumption of antibiotics, including husbandry. Resistant strains are transmitted to humans from livestock and agricultural products via the food chain and may pose a health risk. The commensal microbiota protects against the invasion of environmental strains by secretion of bacteriocins, among other mechanisms. The present study aims to characterize the bactericidal potential of bacteriocinogenic Escherichia coli from healthy humans against multidrug-resistant and antibiotic-sensitive strains from pigs and cattle. Bacteriocin production was tested by the double-layer plate method, and bacteriocin genes were identified by the PCR method. At least one bacteriocinogenic E. coli was detected in the fecal samples of 55% of tested individuals, adults and children. Among all isolates (n = 210), 37.1% were bacteriocinogenic and contained genes of colicin (Col) Ib, ColE1, microcin (Mcc) H47, ColIa, ColM, MccV, ColK, ColB, and single ColE2 and ColE7. Twenty-five E. coli carrying various sets of bacteriocin genes were further characterized and tested for their activity against zoonotic strains (n = 60). Strains with ColE7 (88%), ColE1-ColIa-ColK-MccH47 (85%), MccH47-MccV (85%), ColE1-ColIa-ColM (82%), ColE1 (75%), ColM (67%), and ColK (65%) were most active against zoonotic strains. Statistically significant differences in activity toward antibiotic-resistant strains were shown by commensal E. coli carrying MccV, ColK-MccV, and ColIb-ColK. The study demonstrates that bacteriocinogenic commensal E. coli exerts antagonistic activity against zoonotic strains and may constitute a defense line against multidrug-resistant strains.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3