Abstract
Hospital-acquired infections, particularly in the critical care setting, are becoming increasingly common during the last decade, with Gram-negative bacterial infections presenting the highest incidence among them. Multi-drug-resistant (MDR) Gram-negative infections are associated with high morbidity and mortality, with significant direct and indirect costs resulting from long hospitalization due to antibiotic failure. As treatment options become limited, antimicrobial stewardship programs aim to optimize the appropriate use of currently available antimicrobial agents and decrease hospital costs. Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae are the most common resistant bacteria encountered in intensive care units (ICUs) and other wards. To establish preventive measures, it is important to know the prevalence of Gram-negative isolated bacteria and antibiotic resistance profiles in each ward separately, compared with ICUs. In our single centre study, we compared the resistance levels per antibiotic of P. aeruginosa, A. baumannii and K.pneumoniae clinical strains between the ICU and other facilities during a 2-year period in one of the largest public tertiary hospitals in Greece. The analysis revealed a statistically significant higher antibiotic resistance of the three bacteria in the ICU isolates compared with those from other wards. ICU strains of P. aeruginosa presented the highest resistance rates to gentamycin (57.97%) and cefepime (56.67%), followed by fluoroquinolones (55.11%) and carbapenems (55.02%), while a sensitivity rate of 97.41% was reported to colistin. A high resistance rate of over 80% of A. baumannii isolates to most classes of antibiotics was identified in both the ICU environment and regular wards, with the lowest resistance rates reported to colistin (53.37% in ICU versus an average value of 31.40% in the wards). Statistically significant higher levels of resistance to most antibiotics were noted in ICU isolates of K. pneumoniae compared with non-ICU isolates, with the highest difference—up to 48.86%—reported to carbapenems. The maximum overall antibiotic resistance in our ICU was reported for Acinetobacter spp. (93.00%), followed by Klebsiella spp. (72.30%) and Pseudomonas spp. (49.03%).
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献