Ribes nigrum L. Extract-Mediated Green Synthesis and Antibacterial Action Mechanisms of Silver Nanoparticles

Author:

Hovhannisyan Zaruhi,Timotina Marina,Manoyan Jemma,Gabrielyan Lilit,Petrosyan Margarit,Kusznierewicz BarbaraORCID,Bartoszek AgnieszkaORCID,Jacob ClausORCID,Ginovyan MikayelORCID,Trchounian Karen,Sahakyan NairaORCID,Nasim Muhammad JawadORCID

Abstract

Silver nanoparticles (Ag NPs) represent one of the most widely employed metal-based engineered nanomaterials with a broad range of applications in different areas of science. Plant extracts (PEs) serve as green reducing and coating agents and can be exploited for the generation of Ag NPs. In this study, the phytochemical composition of ethanolic extract of black currant (Ribes nigrum) leaves was determined. The main components of extract include quercetin rutinoside, quercetin hexoside, quercetin glucuronide, quercetin malonylglucoside and quercitrin. The extract was subsequently employed for the green synthesis of Ag NPs. Consequently, R. nigrum leaf extract and Ag NPs were evaluated for potential antibacterial activities against Gram-negative bacteria (Escherichia coli ATCC 25922 and kanamycin-resistant E. coli pARG-25 strains). Intriguingly, the plant extract did not show any antibacterial effect, whilst Ag NPs demonstrated significant activity against tested bacteria. Biogenic Ag NPs affect the ATPase activity and energy-dependent H+-fluxes in both strains of E. coli, even in the presence of N,N’-dicyclohexylcarbodiimide (DCCD). Thus, the antibacterial activity of the investigated Ag NPs can be explained by their impact on the membrane-associated properties of bacteria.

Funder

Science Committee of RA

Science Committee of RA, Ministry of Education, Science, Culture and Sports of RA

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3