Plant origin metabolites in the development of new preparations for overcoming antibiotic-resistance and enhancing the efficacy of chemotherapeutic agents

Author:

Ginovyan Mikayel1,Tadevosyan Silvard1,Shirvanyan Anahit1,Babayan Anush1,Kusznierewicz Barbara2,Koss-Mikołajczyk Izabela2,Mróz Marika2,Bartoszek Agnieszka2,Sahakyan Naira1

Affiliation:

1. Yerevan State University

2. Gdańsk University of Technology

Abstract

Abstract

The presented study aimed to assess the efficacy of secondary metabolites extracted from blackcurrant, fig, and grape leaves in reversing antibiotic resistance and enhancing chemotherapeutic efficacy. The viability tests were employed to assess the resistance-modifying properties of the metabolites both in bacterial cells and cancer cell-lines. To elucidate the potential mechanisms of the antibiotic modulatory activity of test extracts, the changes in H+-fluxes across the cell membrane and their impact on the H+-translocating F0F1-ATPase activity in E. coli were explored. Metabolomic characterization of the extracts was conducted using LC-Q-Orbitrap HRMS analysis. Experiments on doxorubicin-resistant and susceptible HT-29 cells revealed that all three extracts reversed antibiotic resistance in HT-29R cells, making them susceptible to doxorubicin in a dose-dependent manner. Notably, blackcurrant, and fig significantly reduced the minimum inhibitory concentrations of ampicillin and kanamycin against resistant E. coli strains. Our results indicated that all plant extracts enhanced H+-fluxes in the investigated bacterial strain and promoted ATPase activity, suggesting a potential role in altering bacterial membrane integrity. LC-Q-Orbitrap HRMS analysis identified more than 100 major peaks, with flavonoids and phenolics being the dominant constituents. The study underscores the potential of the selected plant extracts in developing of new agents to overcome antibiotic resistance and enhance the efficacy of chemotherapeutic agents. Importantly, although these plant leaves are often considered as bio-waste, they can be used as valuable sources of bioactive compounds. This underlines the importance of re-evaluating agricultural by-products for their potential in pharmacological applications, fostering a sustainable approach in drug development.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3