Author:
Yuan Ganjun,Guan Yingying,Yi Houqin,Lai Shan,Sun Yifei,Cao Seng
Abstract
AbstractAntimicrobial resistance seriously threatened human health, and new antimicrobial agents are desperately needed. As one of the largest classes of plant secondary metabolite, flavonoids can be widely found in various parts of the plant, and their antibacterial activities have been increasingly paid attention to. Based on the physicochemical parameters and antibacterial activities of sixty-six flavonoids reported, two regression equations between their ACD/LogP or LogD7.40 and their minimum inhibitory concentrations (MICs) to gram-positive bacteria were established with the correlation coefficients above 0.93, and then were verified by another sixty-eight flavonoids reported. From these two equations, the MICs of most flavonoids against gram-positive bacteria could be roughly calculated from their ACD/LogP or LogD7.40, and the minimum MIC was predicted as approximately 10.2 or 4.8 μM, more likely falls into the range from 2.6 to 10.2 μM, or from 1.2 to 4.8 μM. Simultaneously, both tendentiously concave regression curves indicated that the lipophilicity is a key factor for flavonoids against gram-positive bacteria. Combined with the literature analyses, the results also suggested that the cell membrane is the main site of flavonoids acting on gram-positive bacteria, and which likely involves the damage of phospholipid bilayers, the inhibition of the respiratory chain or the ATP synthesis, or some others.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献