Novel Plant-Based Metabolites as Disinfectants against Acanthamoeba castellanii

Author:

Siddiqui RuqaiyyahORCID,Akbar Noor,Khatoon Bushra,Kawish Muhammad,Ali Muhammad Shaiq,Shah Muhammad Raza,Khan Naveed AhmedORCID

Abstract

Due to global warming, coupled with global water shortages and the reliance of the public on household water tanks, especially in developing countries, it is anticipated that infections caused by free-living amoebae such as Acanthamoeba will rise. Thus, the development of novel disinfectant(s) which can target pathogenic free-living amoebae effectively is warranted. Herein, we extracted and isolated several plant-based secondary metabolites as novel disinfectants for use against pathogenic Acanthamoeba. The identity of the compounds was confirmed by nuclear magnetic resonance and tested for antiamoebic activities against clinical isolate of A. castellanii, belonging to the T4 genotype. Amoebicidal assays revealed that the compounds tested showed antiamoebic properties. Betulinic acid and betulin exhibited parasite killing of more than 65%. When tested against the cyst stage, betulinic acid, betulin, and vanillic acid inhibited both encystation and excystation processes. Furthermore, the plant-based metabolites significantly inhibited the binding capability of A. castellanii to host cells. Finally, most of the tested compounds displayed minimal cytotoxic activities against human cells and noticeably perturbed amoeba-mediated host cell cytotoxicity. Notably, both alkaloid and betulinic acid showed 20% cytotoxic effects, whereas betulin and lupeol had cytotoxic effects of 24% and 30%, respectively. Overall, our findings indicate that plant-based natural compounds demonstrate anti-Acanthamoebic properties, and they have potential candidates for water disinfectants or contact lens disinfecting solutions, as well as possible therapeutic drugs against Acanthamoeba infections.

Funder

University of Sharjah

American University of Sharjah

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3