Analysis of Capped Silver Nanoparticles Combined with Imipenem against Different Susceptibility Profiles of Klebsiella pneumoniae

Author:

Fontoura Inglid1ORCID,Veriato Thaís S.1,Raniero Leandro J.2ORCID,Castilho Maiara L.1ORCID

Affiliation:

1. Bionanotechnology Laboratory, Research and Development Institute, University of Paraiba Valley, São José dos Campos 12244-000, SP, Brazil

2. Nanosensors Laboratory, Research and Development Institute, University of Paraiba Valley, São José dos Campos 12244-000, SP, Brazil

Abstract

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacterium that has drawn attention due to its resistance to carbapenem antibiotics. The treatment of patients with severe infections has been challenging. Thus, silver nanoparticles (AgNPs) have been applied for their antimicrobial effects. This work aims to analyze the synergistic effect of the carbapenem antibiotic Imipenem with AgNPs against different susceptibility clinical profiles of K. pneumoniae. The silver nanoparticles were synthesized by bottom-up methodology and capped with alpha-lipoic acid. Susceptibility tests were performed using four K. pneumoniae strains with different susceptibility profiles to Imipenem. The strains were induced to form a biofilm for 48 h. Crystal violet and Resazurin assays were performed to determine biofilm formation and minimal inhibitory concentration, respectively. The reduction in Imipenem concentration with the association of nanoparticles was found in all strains studied in planktonic form, and the synergism between silver nanoparticles and Imipenem was demonstrated through the analysis of the fractional inhibitory concentration index. The viability percentage was reduced at rates ≥80% in the biofilm analysis, characterized by the minimal biofilm inhibitory concentration. The study’s proposed association resulted in inhibitory effects on different K. pneumoniae profiles, both in planktonic forms and biofilm, with peculiar behavior in the Imipenem-resistant profile.

Funder

São Paulo State Research Support Foundation

National Council for Scientific and Technological Development

Coordination for the Improvement of Higher Education Personnel (CAPES) scholarship

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3