Abstract
AbstractTargeted bactericidal nanosystems hold significant promise to improve the efficacy of existing antimicrobials for treatment of severe bacterial infections by minimizing the side effects and lowering the risk of antibiotic resistance development. In this work, Silver Oxytetracycline Nano-structure (Ag-OTC-Ns) was developed for selective and effective eradication of Klebsiella pneumoniae pulmonary infection. Ag-OTC-Ns were prepared by simple homogenization-ultrasonication method and were characterized by DLS, Zeta potential, TEM and FT-IR. The antimicrobial activity of Ag-OTC-Ns was evaluated in vitro using broth micro-dilution technique and time-kill methods. Our study showed that MICs of AgNO3, OTC, AgNPs and Ag-OTC-Ns were 100, 100, 50 and 6.25 µg/ml, respectively. Ag-OTC-Ns demonstrated higher bactericidal efficacy against the targeted Klebsiella pneumoniae at 12.5 µg/ml compared to the free Oxytetracycline, AgNO3 and AgNPs. In vivo results confirmed that, Ag-OTC-Ns could significantly eradicate K. pneumoniae from mice lung in compare with free Oxytetracycline, AgNO3 and AgNPs. In addition, Ag-OTC-Ns could effectually diminish the inflammatory biomarkers levels of Interferon Gamma and IL-12, and as a result it could effectively lower lung damage in K. pneumoniae infected mice. Ag-OTC-Ns has no significant toxicity on tested mice along the experimental period, there was no sign of behavioral abnormality in the surviving mice indicating that the Ag-OTC-Ns is safe at the used concentration. Furthermore, capability of 5 kGy Gamma ray to sterilize Ag-OTC-Ns solution without affecting it stability was proven.
Funder
Egyptian Atomic Energy Authority
Publisher
Springer Science and Business Media LLC