Application of Response Surface Methodology to Evaluate Photodynamic Inactivation Mediated by Eosin Y and 530 nm LED against Staphylococcus aureus

Author:

Santos Adriele R.ORCID,da Silva Alex F.,Batista Andréia F. P.,Freitas Camila F.,Bona EvandroORCID,Sereia Maria J.,Caetano Wilker,Hioka Noburu,Mikcha Jane M. G.

Abstract

Photodynamic antimicrobial chemotherapy (PAC) is an efficient tool for inactivating microorganisms. This technique is a good approach to inactivate the foodborne microorganisms, which are responsible for one of the major public health concerns worldwide—the foodborne diseases. In this work, response surface methodology (RSM) was used to evaluate the interaction of Eosin Y (EOS) concentration and irradiation time on Staphylococcus aureus counts and a sequence of designed experiments to model the combined effect of each factor on the response. A second-order polynomial empirical model was developed to describe the relationship between EOS concentration and irradiation time. The results showed that the derived model could predict the combined influences of these factors on S. aureus counts. The agreement between predictions and experimental observations (R2adj = 0.9159, p = 0.000034) was also observed. The significant terms in the model were the linear negative effect of photosensitizer (PS) concentration, followed by the linear negative effect of irradiation time, and the quadratic negative effect of PS concentration. The highest reductions in S. aureus counts were observed when applying a light dose of 9.98 J/cm2 (498 nM of EOS and 10 min. irradiation). The ability of the evaluated model to predict the photoinactivation of S. aureus was successfully validated. Therefore, the use of RSM combined with PAC is a promising approach to inactivate foodborne pathogens.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3