Activity of Phage–Lactoferrin Mixture against Multi Drug Resistant Staphylococcus aureus Biofilms

Author:

Kosznik-Kwaśnicka KatarzynaORCID,Kaźmierczak NataliaORCID,Piechowicz LidiaORCID

Abstract

Biofilms are complex bacterial structures composed of bacterial cells embedded in extracellular polymeric substances (EPS) consisting of polysaccharides, proteins and lipids. As a result, biofilms are difficult to eradicate using both mechanical methods, i.e., scraping, and chemical methods such as disinfectants or antibiotics. Bacteriophages are shown to be able to act as anti-biofilm agents, with the ability to penetrate through the matrix and reach the bacterial cells. However, they also seem to have their limitations. After several hours of treatment with phages, the biofilm tends to grow back and phage-resistant bacteria emerge. Therefore, it is now recommended to use a mixture of phages and other antibacterial agents in order to increase treatment efficiency. In our work we have paired staphylococcal phages with lactoferrin, a protein with proven anti-biofilm proprieties. By analyzing the biofilm biomass and metabolic activity, we have observed that the addition of lactoferrin to phage lysate accelerated the anti-biofilm effect of phages and also prevented biofilm re-growth. Therefore, this combination might have a potential use in biofilm eradication procedures in medical settings.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference49 articles.

1. Epidemiology of Nosocomial Infections Caused by Methicillin-Resistant Staphylococcus aureus

2. Staphylococcus aureus;Leung,2014

3. Pathogenicity and virulence of Staphylococcus aureus

4. Study of Nosocomial Isolates of Staphylococcus aureus with Special Reference to Methicillin Resistant S. Aureus in a Tertiary Care Hospital in Nepal;Shrestha;Nepal Med. Coll. J. NMCJ,2009

5. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3