Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens

Author:

Zhang Song1ORCID,Wang Jun2ORCID,Ahn Juhee13ORCID

Affiliation:

1. Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea

2. College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China

3. Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.

Funder

China Scholarship Council

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3