Vector Quantized Variational Autoencoder-Based Compressive Sampling Method for Time Series in Structural Health Monitoring

Author:

Liang Ge12ORCID,Ji Zhenglin12,Zhong Qunhong2,Huang Yong2,Han Kun2

Affiliation:

1. Elite Engineers School, Harbin Institute of Technology, 92 Xidazhi Street, Harbin 150001, China

2. Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, School of Civil Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China

Abstract

The theory of compressive sampling (CS) has revolutionized data compression technology by capitalizing on the inherent sparsity of a signal to enable signal recovery from significantly far fewer samples than what is required by the Nyquist–Shannon sampling theorem. Recent advancement in deep generative models, which can represent high-dimension data in a low-dimension latent space efficiently when trained with big data, has been used to further reduce the sample size for image data compressive sampling. However, compressive sampling for 1D time series data has not significantly benefited from this technological progress. In this study, we investigate the application of different architectures of deep neural networks suitable for time series data compression and propose an efficient method to solve the compressive sampling problem on one-dimensional (1D) structural health monitoring (SHM) data, based on block CS and the vector quantized–variational autoencoder model with a naïve multitask paradigm (VQ-VAE-M). The proposed method utilizes VQ-VAE-M to learn the data characteristics of the signal, replaces the “hard constraint” of sparsity to realize the compressive sampling signal reconstruction and thereby does not need to select the appropriate sparse basis for the signal. A comparative analysis against various CS methods and other deep neural network models was performed in both synthetic data and real-world data from two real bridges in China. The results have demonstrated the superiority of the proposed method, with achieving the smallest reconstruction error of 0.038, 0.034 and 0.021, and the highest reconstruction accuracy of 0.882, 0.892 and 0.936 for compression ratios of 4.0, 2.66, and 2.0, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3