Bayesian dynamic linear model framework for structural health monitoring data forecasting and missing data imputation during typhoon events

Author:

Wang Qi-Ang1ORCID,Wang Chang-Bao1ORCID,Ma Zhan-Guo1,Chen Wei2,Ni Yi-Qing3ORCID,Wang Chu-Fan4,Yan Bing-Gang5,Guan Pei-Xuan5

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China

2. Xuzhou Key Laboratory for Fire Safety of Engineering Structures, China University of Mining and Technology, Xuzhou, China

3. National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch) and Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

4. School of Economics and Management, China University of Mining and Technology, Xuzhou, China

5. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China

Abstract

A Bayesian dynamic linear model (BDLM) framework for data modeling and forecasting is proposed to evaluate the performance of an operational cable-stayed bridge, that is, Ting Kau Bridge in Hong Kong, by using SHM strain field data acquired. One of the major challenges in dealing with the existing in-service bridge under extreme typhoon loads is to forecast structural behavior using the typhoon response exhibiting non-stationarity, large data fluctuations and strong randomness. The first attempt for SHM data modeling during extreme events, that is, typhoons, using BDLM framework, was conducted in this study. The data from multiple sensors are analyzed for one-step, multi-step ahead forecasting and missing data imputation. The overall bridge behavior is incorporated into a forecasting model by superposition of forecasting results of trend (representing the structural baseline response), periodic component (response component evolving regularly over time), and autoregressive component (time-dependent error) through BDLM algorithm. The results demonstrate that the BDLM framework yielded more accurate calculations compared with Gaussian process and Variational Heteroscedasticity Gaussian Process methods with respect to one-step ahead forecasting for strain data under typhoons. Multi-step ahead forecasting was successfully carried out both for non-typhoon and typhoon responses within an acceptable precision range. The correlation between periodic component and temperature was also investigated. Regarding missing data imputation, BLDM algorithm can generate robust results due to making full use of the monitoring data both before and after the missing segments.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3