A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement

Author:

Abo-Khalil Ahmed G.12ORCID,Alobaid Mohammad3ORCID

Affiliation:

1. Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

2. Department of Electrical Engineering, College of Engineering, Assuit University, Assuit 71515, Egypt

3. Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Almajmaah 11952, Saudi Arabia

Abstract

The increasing peak electricity demand and the growth of renewable energy sources with high variability underscore the need for effective electrical energy storage (EES). While conventional systems like hydropower storage remain crucial, innovative technologies such as lithium batteries are gaining traction due to falling costs. This paper examines the diverse applications of energy storage, spanning from grid connectivity to end-user solutions, and emphasizes large-scale energy recovery and system stability. The integration of EES with various energy infrastructures and consumer strategies is explored, highlighting the use of tariffs and peak pricing systems for energy cost savings. Country-specific priorities shape EES deployment, with the U.S focusing on grid stability, Japan on emergency power, and South Korea, still in the demonstration phase, prioritizing peak demand reduction. Our analysis of the UK, U.S., and South Korea reveals the pivotal role of energy storage in achieving flexible and efficient energy systems. The industry shows promising growth, with significant commercial expansion expected around 2035, presenting profound policy and deployment implications for the future.

Funder

Deanship of Scientific Research, Majmaah University, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3