Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging

Author:

Lee Hwanseok,Jo Kanghee,Park Min-sung,Kim Taewoo,Lee Heesoo

Abstract

The degradation behavior of yttria-stabilized zirconia by thermal aging was investigated in terms of phase transformation, local atomic structure, and electrical conductivity. The average grain size of 8YSZ was increased from 20.83 μm to 25.81 μm with increasing aging temperature. All 8YSZ samples degraded at different temperatures had a predominantly cubic structure. The (400) peak of 8YSZ deteriorated at 1300 and 1400 °C shifted to a high angle, and the peak of tetragonal was not indexed. For 8YSZ degraded at 1500 °C, the (400) peak shifted to a lower angle, and the peak of tetragonal was identified. Analysis of the local microstructure of aged 8YSZ using extended X-ray absorption fine structure showed that the intensity of the Zr-O peak gradually increased and that the intensity of the peak of cationic Zr decreased as the aging temperature increased. The changes in the peaks indicate that the oxygen vacancies were reduced and Y3+ ions escaped from the lattice, leading to the destabilization of 8YSZ. The activation energies of 8YSZ at 1300 °C and 1400 °C were derived to be 0.86 and 0.87 eV, respectively, and the activation energy of 8YSZ at 1500 °C increased significantly to 0.92 eV. With the thermal deterioration of 8YSZ, the cation (Y3+) escaped from the lattice and the number of oxygen vacancies decreased, resulting in the formation of a tetragonal structure and high activation energy at 1500 °C.

Funder

Korea Institute for Advancement of Technology

Ministry of Education(MOE, Korea) and National Research Foundation of Kore

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3