Yttria stabilized zirconia membrane stability in molten fluoride fluxes for low-carbon magnesium production by the SOM process

Author:

Milshtein J.1,Gratz E.2,Pati S.3,Powell A.C.3,Pal U.1

Affiliation:

1. Division of Materials Science and Engineering, Boston University, Brookline, USA + Department of Mechanical Engineering, Boston University, Boston, USA

2. Division of Materials Science and Engineering, Boston University, Brookline, USA

3. Metal Oxygen Separation Technologies, Inc., Natick, USA

Abstract

The Solid Oxide Membrane (SOM) process for magnesium production involves the direct electrolysis of magnesium oxide for energy efficient and low-carbon magnesium production. In the SOM process, magnesium oxide is dissolved in a molten oxy-fluoride flux. An oxygen-ion-conducting SOM tube, made from yttria stabilized zirconia (YSZ), is submerged in the flux. The operating life of the electrolytic cell can be improved by understanding degradation processes in the YSZ, and one way the YSZ degrades is by yttria diffusion out of the YSZ. By adding small amounts of YF3 to the flux, yttria diffusion can be controlled. The diffusion of yttria into the flux was quantified by determining the yttria concentration profile as a function of immersion time in the flux and distance from the flux-YSZ interface. Yttria concentrations were determined using x-ray spectroscopy. The diffusion process was modeled using a numerical approach with an analytic solution to Fick?s second law. These modeling and experimental methods allowed for the determination of the optimum YF3 concentration in the flux to minimize yttria diffusion and improve membrane stability. Furthermore, the effects of common impurities in magnesium ores, such as calcium oxide, silica, and sodium oxide/sodium peroxide, on YSZ stability are being investigated.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3