Mechanical Property Evaluation and Prediction of Cementing Composites Blended with MK and UFA under High-Temperature Steam Curing

Author:

Liang Chao,Xing Yongming,Hou Xiaohu

Abstract

In this paper, the influence of the substitution rate of metakaolin (MK) and ultrafine fly ash (UFA) on the hydration degree, the micromechanical properties, the pore size distribution, and the corresponding fractal dimension of composite cement-based material was investigated under high-temperature steam curing. Furthermore, Thermogravimetric, Nanoindentation, and low-field nuclear magnetic resonance tests were used to explore the influencing factors of pore size distribution and its corresponding multi-fractal dimension. Finally, the correlations among the pore size distribution, related fractal dimensions, and compression strength were analyzed. Results indicate that the MK-UFA cement ternary cementation system (TCS) can improve the compressive strength and fluidity of samples and enhance the hydration degree and micromechanical properties of the cementitious system. TCS effectively refines the pore size and increases microporosity. In addition, micropore and its fractal dimension have a stronger correlation with the compressive strength of composite cement-based materials. Furthermore, the micro-fractal dimensions can better reflect the essential characteristics of the composite cementitious system. The higher the degree of hydration of the cementitious system and the nanomechanical properties of the C-(A)-S-H gel, the lower the micro-fractal dimension. Finally, the GM (1,3) prediction model of compressive strength, micro-fractal dimension, and microporosity are established based on the grey relational theory.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3