Abstract
The double-deck tunnel is well known as smart infrastructure because multiple sections can be used for various purposes. Although the stability of a double-deck tunnel is mainly governed by the intermediate slab, the effect of various governing factors on tunnel structural stability has not been fully investigated. In this study, performance-based evaluation method for a double-deck tunnel is suggested as a three-dimensional matrix considering the life cycle of a double-deck tunnel. Moreover, a customized software for design and maintenance of a double-deck tunnel is developed. A structural analysis solver based on a beam–spring model for a double-deck tunnel was embedded in this code. The effects of connection type as well as depth of tunnel, ground stiffness and traffic load on structural behavior of tunnel were investigated. From the analysis, it was found that the connection type between segment lining and intermediate slab significantly affects the behavior of segment lining: simply connected condition causes lesser stress and moment than fully fixed condition. The deeper the tunnel depth, the greater the member force of segment lining. In addition, as both the tunnel depth and the ground stiffness increase, the influence of connection type on the structural stability of the double-deck tunnel becomes insignificant.
Funder
Ministry of Land, Infrastructure and Transport
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献