Comparative Analysis and Safety Evaluation of Shield Segment Structure Model under Surcharge Loading

Author:

Liu Xiaofeng1,Jiang Yan1,Li Xiaolong1ORCID,Zang Quansheng1,Yue Jinchao1

Affiliation:

1. School of Water Conservancy and Transportation, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China

Abstract

In shield tunneling projects, the selection of an accurate model to calculate the mechanical response of segment structure plays a crucial role in the design and cost of the project. The shell–spring and beam–spring models are two widely used methods for this purpose. However, it is still not clear how accurate and different these models are in calculation results under surcharge load. Therefore, to accurately calculate the internal forces and deformation of the segment structure and clarify the difference between the two models’ results, the shell–spring and beam–spring models were established based on a subway shield tunnel project in Zhengzhou city. The reliability of the models was verified by comparing and analyzing the differences in deformation results between the models and field measurements. Furthermore, the safety of the segment structure was evaluated according to the ultimate bearing capacity of the normal section. The results declare that: (1) In the shell–spring model, the internal force gradually reduces from the edges towards the center of the segment width, and the shield segment exhibits a prominent non-plane strain state. (2) The internal force of the beam–spring model is larger than that of the shell–spring model. The axial force difference between the two models is relatively small; meanwhile, there is a larger disparity in the bending moment. However, with an increase in surcharge loading, the discrepancy in internal forces between the two models gradually decreases. (3) The calculation results of the shell–spring model are close to the field-measured values and the shield tunnel model test values, which verifies the accuracy and reliability of the shell–spring model. Therefore, it is more reasonable to use the shell–spring model to calculate the mechanical response of the segment structure. (4) With an increase in surcharge loading, the safety of the shield tunnel decreases gradually. Therefore, surcharge loading above the shield tunnel should be reasonably controlled to meet the requirements of the normal use of the shield segment. This manuscript aims to provide a reference for the future design and optimization of the shield tunnels’ lining structure.

Funder

National Natural Science Foundation of China

Program for Innovative Research Team (in Science and Technology) at the University of Henan Province

Central Plains Talent Plan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3