A Novel Data-Driven Evaluation Framework for Fork after Withholding Attack in Blockchain Systems

Author:

Zhang Yang,Chen YourongORCID,Miao KeleiORCID,Ren Tiaojuan,Yang Changchun,Han Meng

Abstract

In the blockchain system, mining pools are popular for miners to work collectively and obtain more revenue. Nowadays, there are consensus attacks that threaten the efficiency and security of mining pools. As a new type of consensus attack, the Fork After Withholding (FAW) attack can cause huge economic losses to mining pools. Currently, there are a few evaluation tools for FAW attacks, but it is still difficult to evaluate the FAW attack protection capability of target mining pools. To address the above problem, this paper proposes a novel evaluation framework for FAW attack protection of the target mining pools in blockchain systems. In this framework, we establish the revenue model for mining pools, including honest consensus revenue, block withholding revenue, successful fork revenue, and consensus cost. We also establish the revenue functions of target mining pools and other mining pools, respectively. In particular, we propose an efficient computing power allocation optimization algorithm (CPAOA) for FAW attacks against multiple target mining pools. We propose a model-solving algorithm based on improved Aquila optimization by improving the selection mechanism in different optimization stages, which can increase the convergence speed of the model solution and help find the optimal solution in computing power allocation. Furthermore, to greatly reduce the possibility of falling into local optimal solutions, we propose a solution update mechanism that combines the idea of scout bees in an artificial bee colony optimization algorithm and the constraint of allocating computing power. The experimental results show that the framework can effectively evaluate the revenue of various mining pools. CPAOA can quickly and accurately allocate the computing power of FAW attacks according to the computing power of the target mining pool. Thus, the proposed evaluation framework can effectively help evaluate the FAW attack protection capability of multiple target mining pools and ensure the security of the blockchain system.

Funder

“Ling Yan” Research and Development Project of Science and Technology Department of Zhejiang Province of China

Public Welfare Technology Application and Research Projects of Zhejiang Province of China

Special Funds for Basic Scientific Research in Provincial Universities from Zhejiang Shuren University

CCF- AFSG Research Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Swarm learning for decentralized and confidential clinical machine learning;Nature,2021

2. Embedding temporal networks inductively via mining neighborhood and community influences;Appl. Intell.,2022

3. A survey on blockchain systems: Attacks, defenses, and privacy preservation;High-Confidence Computing.,2022

4. A survey on blockchain for information systems management and security;Inf. Process. Manag.,2021

5. Embedding blockchain technology into IoT for security: A survey;IEEE Internet Things J.,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3