K-Anonymity Privacy Protection Algorithm for Multi-Dimensional Data against Skewness and Similarity Attacks

Author:

Su Bing1,Huang Jiaxuan1,Miao Kelei2ORCID,Wang Zhangquan2ORCID,Zhang Xudong2,Chen Yourong2ORCID

Affiliation:

1. School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China

2. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China

Abstract

Currently, a significant focus has been established on the privacy protection of multi-dimensional data publishing in various application scenarios, such as scientific research and policy-making. The K-anonymity mechanism based on clustering is the main method of shared-data desensitization, but it will cause problems of inconsistent clustering results and low clustering accuracy. It also cannot defend against several common attacks, such as skewness and similarity attacks at the same time. To defend against these attacks, we propose a K-anonymity privacy protection algorithm for multi-dimensional data against skewness and similarity attacks (KAPP) combined with t-closeness. Firstly, we propose a multi-dimensional sensitive data clustering algorithm based on improved African vultures optimization. More specifically, we improve the initialization, fitness calculation, and solution update strategy of the clustering center. The improved African vultures optimization can provide the optimal solution with various dimensions and achieve highly accurate clustering of the multi-dimensional dataset based on multiple sensitive attributes. It ensures that multi-dimensional data of different clusters are different in sensitive data. After the dataset anonymization, similar sensitive data of the same equivalence class will become less, and it eventually does not satisfy the premise of being theft by skewness and similarity attacks. We also propose an equivalence class partition method based on the sensitive data distribution difference value measurement and t-closeness. Namely, we calculate the sensitive data distribution’s difference value of each equivalence class and then combine the equivalence classes with larger difference values. Each equivalence class satisfies t-closeness. This method can ensure that multi-dimensional data of the same equivalence class are different in multiple sensitive attributes, and thus can effectively defend against skewness and similarity attacks. Moreover, we generalize sensitive attributes with significant weight and all quasi-identifier attributes to achieve anonymous protection of the dataset. The experimental results show that KAPP improves clustering accuracy, diversity, and anonymity compared to other similar methods under skewness and similarity attacks.

Funder

Public Welfare Technology Application and Research Projects of Zhejiang Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3