Abstract
The flow control effects of a nanosecond-pulse-driven dielectric barrier discharge plasma actuator (ns-DBDPA) in dynamic stall flow were experimentally investigated. The ns-DBDPA was installed on the leading edge of an airfoil model designed in the form of a helicopter blade. The model was oscillated periodically around 25% of the chord length. Aerodynamic coefficients were calculated using the pressure distribution, which was obtained by the measurement of the unsteady pressure by sensors inside the model. The flow control effect and its sensitivity to pitching oscillation and ns-DBDPA control parameters are discussed using the aerodynamic coefficients. The freestream velocity, the mean of the angle of attack, and the reduced frequency were employed as the oscillation parameters. Moreover, the nondimensional frequency of the pulse voltage, the peak pulse voltage, and the type and position of the ns-DBDPA were adopted as the control parameters. The result shows that the ns-DBDPA can decrease the hysteresis of the aerodynamic coefficients and a flow control effect is obtained in all cases. The flow control effect can be maximized by adopting the low nondimensional frequency of the pulse voltage.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献