Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator

Author:

XU Zeyang,WU Bin,GAO Chao,WANG Na,JIA Tianhao

Abstract

Abstract To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil, the flow control by a microsecond-pulsed dielectric barrier discharge (MP-DBD) actuator on the dynamic stall of a periodically pitching NACA0012 airfoil was investigated experimentally. Unsteady pressure measurements with high temporal accuracy were employed in this study, and the unsteady characteristics of the boundary layer were investigated by wavelet packet analysis and the moving root mean square method based on the acquired pressure. The experimental Mach number was 0.2, and the chord-based Reynolds number was 870 000. The dimensionless actuation frequencies F + were chosen to be 0.5, 1, 2, and 3, respectively. For the light dynamic regime, the MP-DBD plasma actuator plays the role of suppressing flow separation from the trial edge and accelerating the flow reattachment due to the high-momentum freestream flow being entrained into the boundary layer. Meanwhile, actuation effects were promoted with the increasing dimensionless actuation frequency F +. The control effects of the deep dynamic stall were to delay the onset and reduce the strength of the dynamic stall vortex due to the accumulating vorticity near the leading edge being removed by the induced coherent vortex structures. The laminar fluctuation and Kelvin–Helmholtz (K–H) instabilities of transition and relaminarization were also mitigated by the MP-DBD actuation, and the alleviated K-H rolls led to the delay of the transition onset and earlier laminar reattachment, which improved the hysteresis effect of the dynamic stall. For the controlled cases of F + = 2, and F + = 3, the laminar fluctuation was replaced by relatively low frequency band disturbances corresponding to the harmonic responses of the MP-DBD actuation frequency.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3