Direct Model Reference Adaptive Control of a Boost Converter for Voltage Regulation in Microgrids

Author:

Kahani RasoolORCID,Jamil MohsinORCID,Iqbal M. TariqORCID

Abstract

In this study, we present a Direct Model Reference Adaptive Control (DMRAC) algorithm in a boost converter used in islanded microgrids (MG) with a solar photovoltaic (PV) system. Islanded types of microgrids have very sensitive voltage and frequency variability; therefore, a robust and adaptive controller is always desired to control such variations within the MG. A DC–DC boost converter with a modified MIT rule controller is proposed in this paper, which stabilizes output voltage variations in islanded MG. Since the boost converter is a non-minimum phase, the controller design that relies only on output voltage feedback becomes challenging. Even though output voltage control can be achieved using inductor current control, such current mode controllers may also require prior knowledge of the load resistance and more states, such as output and inductor currents in feedback. Here, two control loops are used to achieve a stable output voltage; a PID controller can regulate the output voltage at a fixed level, and the outer loop is designed to implement the MIT rule for a DMRAC. To ensure that the actual system is following the desired reference model, using only an output voltage feedback sensor, a DMRAC is devised to update the PID controller parameters in real-time. Compared to a DC–DC boost converter connected to the MG, a controller, such as the one introduced in this paper, is more successful in dealing with unknown parameter fluctuations and disturbance changes. The MATLAB/SIMULINK is used to design and simulate the controller with different load disturbances and input voltage variances. The hardware validation is also carried out to show the performance of the proposed controller. Our results suggest that the DMRAC provides robust regulation against parameter variations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. A state of art review of microgrid control and integration aspects;Maneesh,2016

2. An Optimal Power Management System Based on Load Demand and Resources Availability for PV Fed DC-Microgrid with Power-Sharing among Multiple Nanogrids;Zakir;Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe),2021

3. A fault detection, localization, and categorization method for PV fed DC-microgrid with power-sharing management among the nano-grids

4. A survey on voltage boosting techniques for step-up DC-DC converters;Forouzesh;Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE),2016

5. Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3