Isobaric Expansion Engine Compressors: Thermodynamic Analysis of the Simplest Direct Vapor-Driven Compressors

Author:

Kronberg AlexanderORCID,Glushenkov Maxim,Roosjen SanderORCID,Kersten Sascha

Abstract

Isobaric expansion (IE) technology is a promising solution for mini- and medium-scale low-grade heat utilization. IE engines directly convert heat to mechanical energy and are particularly interesting as direct-acting, vapor-driven pumps and compressors. The elimination of multiple energy transformations, technical simplicity and the ability to use widely available low-grade heat (<100 °C) instead of fossil fuels are attractive features of this technology. The purpose of this paper was to present a new compression technology based on IE Worthington type engines, analyze the process analytically and numerically, and provide a first assessment of its potential. The simplest single- and double-acting schemes were considered for arbitrary low and high pressures of the compressed gas/vapor and driving vapor. In these schemes, the compressor piston was rigidly connected to that of an engine/driver. The vapor use efficiency of the driver process was characterized by the ratio of the network carried out in the cycle to the consumed mass of the driving vapor. The performed thermodynamic analysis showed how the vapor use efficiency depends on the process parameters. It was found that the efficiency of vapor use in the simplest schemes was low in comparison with the efficiency in pumps if the compressor work was much less than the pump work at the same pressure ratio. This occurred because the energy of the driving vapor was spent on the compression of the vapor itself. As a result, the thermal efficiency of the IE engine compressors was lower than that of the IE engine pumps. The difference was very large if the work of the engine feed pump was significant and no heat regeneration is applied. The results obtained are very useful for achieving improvements in this interesting technology, which will be reported in subsequent publications.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference37 articles.

1. Theoretical Basis of the Organic Rankine Cycle, in Organic Rankine Cycle (ORC) Power Systems;Macchi,2017

2. A World Overview of the Organic Rankine Cycle Market

3. Q3 2017: Global Power Markets at a Glance https://www.power-technology.com/comment/q3-2017-global-power-markets-glance/

4. Techno-economic survey of Organic Rankine Cycle (ORC) systems

5. Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3