Abstract
Economic expedience of waste heat recovery systems (WHRS), especially for low temperature difference applications, is often questionable due to high capital investments and long pay-back periods. With a simple design, isobaric expansion (IE) machines could provide a viable pathway to utilizing otherwise unprofitable waste heat streams for power generation and particularly for pumping liquids and compression of gases. Different engine configurations are presented and discussed. A new method of modeling and calculation of the IE process and efficiency is used on IE cycles with various pure and mixed working fluids. Some interesting cases are presented. It is shown in this paper that the simplest non-regenerative IE engines are efficient at low temperature differences between a heat source and heat sink. The efficiency of the non-regenerative IE process with pure working fluid can be very high, approaching Carnot efficiency at low pressure and heat source/heat sink temperature differences. Regeneration can increase efficiency of the IE cycle to some extent. Application of mixed working fluids in combination with regeneration can significantly increase the range of high efficiencies to much larger temperature and pressure differences.
Funder
Netherlands Enterprise Agency
Qatar National Research Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献