Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake in China Using Sentinel-1 SAR Images

Author:

Wang Zirui,Xie Fei,Ling FengORCID,Du Yun

Abstract

High-temporal-resolution inundation maps play an important role in surface water monitoring, especially in lake sites where water bodies change tremendously. Synthetic Aperture Radar (SAR) that guarantees a full time-series in monitoring surface water due to its cloud-penetrating capability is preferred in practice. To date, the methods of extracting and analyzing inundation maps of lake sites have been widely discussed, but the method of extracting surface water maps refined by inundation frequency map and the distinction of inundation frequency map from different datasets have not been fully explored. In this study, we leveraged the Google Earth Engine platform to compare and evaluate the effects of a method combining a histogram-based algorithm with a temporal-filtering algorithm in order to obtain high-quality surface water maps. Both algorithms were conducted on Sentinel-1 images over Poyang Lake and Dongting Lake, the two largest lakes in China, respectively. High spatiotemporal time-series analyses of both lakes were implemented between 2017 and 2021, while the inundation frequency maps extracted from Sentinel-1 data were compared with those extracted from Landsat images. It was found that Sentinel-1 can monitor water inundation with a substantially higher accuracy, although minor differences were found between the two sites, with the overall accuracy for Poyang Lake (95.38–98.69%) being higher than that of Dongting Lake (95.05–97.5%). The minimum and maximum water areas for five years were 1232.96 km2 and 3828.36 km2 in Poyang Lake, and 624.7 km2 and 2189.17 km2 in Dongting Lake. Poyang Lake was frequently inundated with 553.03 km2 of permanent water and 3361.39 km2 of seasonal water while Dongting Lake was less frequently inundated with 320.09 km2 of permanent water and 2224.53 km2 of seasonal water. The inundation frequency maps from different data sources had R2 values higher than 0.8, but there were still significant differences between them. The overall inundation frequency values of the Sentinel-1 inundation frequency maps were lower than those of the Landsat inundation frequency maps due to the severe contamination from cloud cover in Landsat imagery, which should be paid attention in practical application.

Funder

Innovation Group Project of Hubei Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3