GRDL: A New Global Reservoir Area‐Storage‐Depth Data Set Derived Through Deep Learning‐Based Bathymetry Reconstruction

Author:

Hao Zhen12,Chen Fang3,Jia Xiaofeng12,Cai Xiaobin1ORCID,Yang Chao14,Du Yun1,Ling Feng14ORCID

Affiliation:

1. Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan China

2. University of Chinese Academy of Sciences Beijing China

3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing Wuhan University Wuhan China

4. State Key Laboratory of Geodesy and Earth's Dynamics Innovation Academy of Precision Measurement of Science and Technology Chinese Academy of Sciences Wuhan China

Abstract

AbstractReservoirs play a critical role in the global water cycle by regulating the flow of water from the environment into human systems. Accurate estimation of the area‐storage‐depth relationships for global reservoirs is essential for effective hydrological modeling and reservoir storage monitoring. Bathymetry reconstruction presents a promising approach to derive this information. Current bathymetry methods either rely on simple approximations or are constrained by dependence on altimetry data or field survey data. To overcome these limitations, this study presents a pioneering approach involving training a deep learning model to reconstruct bathymetry and establish precise area‐storage‐depth relationships. We trained the deep learning model with approximately 160,000 simulated reservoirs derived from Shuttle Radar Topography Mission (SRTM) and fine‐tuned the model based on hundreds of reservoirs with bathymetry data. By employing the trained model and SRTM, the bathymetry of 7,250 reservoirs in the Global Reservoir and Dam Database were subsequently reconstructed. The method is validated against comprehensive reference data sets, including 54 test reservoirs with bathymetry data, 118 satellite altimetry‐based reservoirs, and 68 LiDAR‐based reservoirs. The reconstructed bathymetry achieves a mean absolute error of 7.87 m and a mean error of +2.05 m for the test reservoirs. The validation against satellite altimetry and LiDAR‐based references significantly outperforms previous geometric approximation techniques, with median normalized root mean square error (NRMSE) values of 20.6% for area‐storage and 22.1% for area‐level curves. Additionally, the reservoir storage variations are estimated with precision, outperforming previous methods. The proposed deep learning‐based approach presents a robust solution for accurate reservoir bathymetry estimation and establishes more reliable area‐storage‐depth relationships for reservoirs worldwide.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3