Monitoring Extractive Activity-Induced Surface Subsidence in Highland and Alpine Opencast Coal Mining Areas with Multi-Source Data

Author:

Wang Shuqing,Bai ZechaoORCID,Lv Yuepeng,Zhou Wei

Abstract

Mining developments in alpine coal mining areas result in slow or rapid ground subsidence, which can lead to melting and collapse of permafrost. This paper integrated unmanned aerial vehicle (UAV) images and satellite-based SAR interferometry images to monitor intensive surface mining subsidence during reclamation. Digital Surface Model (DSM) acquired from UAV images was first used to evaluate the changes of the reclamation scheme on the microtopography carried out by slope and the Digital Elevation Model (DEM) of difference (DoD). The monitoring results showed that the slope had been reduced from over 30 degrees to under 15 degrees after the terrain had been reshaped. The DoD map revealed the distribution of main extraction areas and landfill areas. To further monitor the surface subsidence after local terrain adjustment, the Permanent Scatterer Interferometry (PS-InSAR) method was used to reveal the surface subsidence characteristics of the mine site before and after reclamation. The maximum cumulative subsidence ranged from −772.3 to 1183 mm based on 21 Sentinel-1A images in three years. Within a year of terrain reshaping, uplift and subsidence still occurred at hills and pit side slopes, following the nearly equal subsidence rate. The experimental results showed that the slope reshaping and vegetation recovery had a limited impact on the reduction of the ground subsidence in a short period. Therefore, on this basis, a combination of UAV and PS-InSAR methods can be used to continue monitoring time series subsidence in alpine mines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3