Active–Passive Remote Sensing Evaluation of Ecological Environment Quality in Juye Mining Area, China

Author:

Chen Yu12,Suo Zhihui1,Lu Hui1,Cheng Huibin1,Li Qian1

Affiliation:

1. School of Environment Science and Spatial Informatics, China University of Mining and Technology (CUMT), Xuzhou 221116, China

2. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China

Abstract

The coal industry is a crucial component of China’s energy sector. However, the persistent exploitation of coal resources has gravely impacted the ecological environment. While the Remote Sensing Ecology Index (RSEI) is predominantly used for assessing ecological quality, its primary focus has been urban or aquatic environments. There is limited research focused on the evaluation of the ecological environment quality in mining areas. Moreover, the information regarding surface deformation caused by coal mining extraction is an essential factor in the ecological monitoring of mining areas. Therefore, this study proposed the Modified Remote Sensing Ecology Index (MRSEI). This enhanced model merges active and passive remote sensing techniques and incorporates a deformation factor (Surface Deformation Index, SDI) to provide a holistic evaluation of mining area ecologies. Furthermore, for comparative verification, we developed the Eco-environmental Quality Index (EQI) model by selecting 12 ecological parameters and employing a hierarchical analysis. The Juye mining area in Shandong Province was selected as the region of study. MRSEI results from 2015 to 2021 indicate a decline in the ecological quality of the Juye mining area, with MRSEI values registering at 0.691, 0.644, and 0.617. The EQI model mirrors this decreasing trend over the same period. Despite MRSEI using fewer indicators, its assessments align closely with the multi-indicator EQI method. This validates the accuracy of the MRSEI method, providing reliable technical support for the monitoring and evaluation of ecological environment quality in mining areas.

Funder

National Natural Science Foundation of China

the Open Fund of Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3