Convolutional Neural Networks Based on Sequential Spike Predict the High Human Adaptation of SARS-CoV-2 Omicron Variants

Author:

Nan Bei-Guang,Zhang SenORCID,Li Yu-Chang,Kang Xiao-Ping,Chen Yue-Hong,Li Lin,Jiang TaoORCID,Li JingORCID

Abstract

The COVID-19 pandemic has frequently produced more highly transmissible SARS-CoV-2 variants, such as Omicron, which has produced sublineages. It is a challenge to tell apart high-risk Omicron sublineages and other lineages of SARS-CoV-2 variants. We aimed to build a fine-grained deep learning (DL) model to assess SARS-CoV-2 transmissibility, updating our former coarse-grained model, with the training/validating data of early-stage SARS-CoV-2 variants and based on sequential Spike samples. Sequential amino acid (AA) frequency was decomposed into serially and slidingly windowed fragments in Spike. Unsupervised machine learning approaches were performed to observe the distribution in sequential AA frequency and then a supervised Convolutional Neural Network (CNN) was built with three adaptation labels to predict the human adaptation of Omicron variants in sublineages. Results indicated clear inter-lineage separation and intra-lineage clustering for SARS-CoV-2 variants in the decomposed sequential AAs. Accurate classification by the predictor was validated for the variants with different adaptations. Higher adaptation for the BA.2 sublineage and middle-level adaptation for the BA.1/BA.1.1 sublineages were predicted for Omicron variants. Summarily, the Omicron BA.2 sublineage is more adaptive than BA.1/BA.1.1 and has spread more rapidly, particularly in Europe. The fine-grained adaptation DL model works well for the timely assessment of the transmissibility of SARS-CoV-2 variants, facilitating the control of emerging SARS-CoV-2 variants.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3