Shaking Table Tests and Simulations of Grouting Sleeve Connecting Prefabricated Bridge Piers

Author:

Yang Meng,Jia Yanmin,Liang Dongwei

Abstract

To investigate the seismic performance of prefabricated piers with a grouting sleeve connection, two scaled model specimens of symmetrical prefabricated piers with different reinforcement anchorage lengths, and two cast-in-place (CIP) comparison symmetrical specimens, were designed and manufactured. The fabricated specimens were connected by a grouting sleeve, which was in the column of the pier. The height of the pier column of the test piece was 1.425 m, the diameter of the pier column was 0.25 m, and the size of the bearing platform was 0.85 m × 0.85 m × 0.5 m. Shake table tests were performed on the specimens to evaluate crack development, dynamic characteristics, acceleration response and relative displacement of the pier tops, as well as strain in the plastic hinge area. The results revealed the dominant failure mode of the test piers was bending failure, while the cracks were generally horizontal through-cracks. The failure location of the prefabricated specimens with the grouting sleeve was concentrated within one diameter of the pier in the upper sleeve region. Compared with the CIP specimens, the plastic hinge exhibited an obvious upward movement. Under a maximum test loading condition, the peak acceleration at the pier top of the fabricated pier was 11.0% smaller than that of the CIP specimen, the peak relative displacement was 34.2% smaller than that of the CIP specimen, and the peak tensile strain of the pier body was 46.8% smaller. The seismic performance of the prefabricated pier connected via the grouting sleeves was barely affected by changing the anchoring length of the reinforcements in the grouting sleeves. An ABAQUS finite element model was established for the specimens, with good agreement between the model and experimental results. When the seismic load was 0.65 g, the difference between the peak acceleration of the pier top in the X direction and the Y direction of the numerical simulation and the experimental data was less than 15%.

Funder

Scientific Research Project of Capital Engineering & Research Incorporation Limited of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference15 articles.

1. Earthquake disaster investigation and risk assessment;Zhang;City Dis. Reduct.,2021

2. Research Progress on Bridge Seismic Design: Target from Seismic Alleviation to Post earthquake Structural Resilience;Li;China J. Highw. Transp.,2017

3. Research and development on accelerated bridge construction technology;Xiang;China J. Highw. Transp.,2018

4. Shear strength and cracking mechanism of precast bridge columns with grouted sleeve connections

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3