Spatiotemporal Analysis of Land Cover and the Effects on Ecosystem Service Values in Rupandehi, Nepal from 2005 to 2020

Author:

KC Aman,Wagle NimishaORCID,Acharya Tri DevORCID

Abstract

Land cover (LC) is a crucial parameter for studying environmental phenomena. Cutting-edge technology such as remote sensing (RS) and cloud computing have made LC change mapping efficient. In this study, the LC of Rupandehi District of Nepal were mapped using Landsat imagery and Random Forest (RF) classifier from 2005 to 2020 using Google Earth Engine (GEE) platform. GEE eases the way in extracting, analyzing, and performing different operations for the earth’s observed data. Land cover classification, Centre of gravity (CoG), and their trajectories for all LC classes: agriculture, built-up, water, forest, and barren area were extracted with five-year intervals, along with their Ecosystem service values (ESV) to understand the load on the ecosystem. We also discussed the aspects and problems of the spatiotemporal analysis of developing regions. It was observed that the built-up areas had been increasing over the years and more centered in between the two major cities. Other agriculture, water, and forest classes had been subjected to fluctuations with barren land in the decreasing trend. This alteration in the area of the LC classes also resulted in varying ESVs for individual land cover and total values for the years. The accuracy for the RF classifier was under substantial agreement for such fragmented LCs. Using LC, CoG, and ESV, the paper discusses the need for spatiotemporal analysis studies in Nepal to overcome the current limitations and later expansion to other regions. Studies such as these help in implementing proper plans and strategies by district administration offices and local governmental bodies to stop the exploitation of resources.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3